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SUMMARY AND ABSTRACT

Developments resulting from work on Contract No. F30602-71-C-0356 are

reported. In Section 1, some remarks are presented on Furutsu's recent

theoretical analysis of irradiance scintillation. In Section 2, we define

and compare useful criteria for the resolution of point features on an illum-

inated target in turbulent air. Th2 results are related to the work on focal-

spot areas. The coefficient of the log-amplitude variance in the saturation

regime is computed, and we find < 6X2> = 0.41 (Km L 3n) in Section 3.

Finally, the work on power spectra of angle-of-arrival fluctuations is ex-

panded in Section 4 to include a simple iaterferoi:ter. Two physical cases,

simply related to the ray formulas, appear to apply in most practical

situations.
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1. SOME REMARXS ON THE FURUTSU THEORY

In a recent Special Report on the XVIIth General Assembly of URSI* held

at Warsaw, Poland late in August 1972, we mentioned a discussion on Furutsu's

recent work[l]. Furutsu, in work that is exceptionally difficult to read,

has derived the following results for beam waves propagating through turbulent

air:

(1) The probability density of irradiance I approaches that of a

Rice-Nakagami distribution at large propagation distances L.

(ii) Through another type of approximation Furutsu also derives
that the logarithm of I follows the Rice-Nakagami distribution:
intecestingly enough this distribution reduces to the log-
normal one for points far away from the central beam axis.

In the dis, ussion at URSI we commeiLted on these results, and therefore on

parts of Furutsu's theory. Because his work is hard to read, and because

Furutsu's results art being quoted indiscriminately, we shall offer these

detailed comments on the LJ'eory as w- see it.

There appear to be some unphysical features of Furutsu's solution. The

above-quoted result (ii) centradicts result (i) for points of observation on

the beam axis; they cannot both hold simultaneously. Then, as Furutsu makes

explicitly clear in the paragraphs following hiL 7q. (118), the fluctuations

tend to zero as the beam wave approaches a plane wavc. It is indeed possible

that - in some way - the experimental realizations of plane waves are not that

close to Furutsu's plane-wave limit of his beam waves, but at any rate, it

seems decidedly unphysical that the beam-wave I does fluctuate on the central

axis, whereas the plane-wave I does not. We have uncovered a possible source

of erro- in one of Furutsu's approximations which may make (ii) unphysical.

In order to q'Rcuss it, we have to give a very brief summary of Furutsu's

work. It consists u: three distinct parts.

1.1 A Formal Expression for P(I)

Through a method involving variational derivatives and cumulants of the

random field, Furutsu derives a general expression of the irradiance probability

*International Union of Radio Science (URSI).
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density P(I). We quote a form given by Bremmer in a papet presented at URSI

in Warsaw[2] for plane waves:

22 01 1/2](1)~ ~ -Q-(a a e 014"a 10)/II1 [2. -i. I/2 2+a20
P(!) = Q(jk) 11l 0o L~11 ( Ol +°0

a J+k

Q(ajk) exp j kjk :ýkF j ' k

Sk>2 au01u 10

(1)

a11 = I0 [1 - exp(-2aL)]

a01 = 1iO- i/2 exp(-aL)

Here, J is a Bessel function; J (ix) = I (x) in real notation, but we use the

symbol i for the free-space irradiance and therefire have utilized the Bessel

function J with imaginary argument. The well-known formal attenuation coeffi-0o 5/3C2. h uuat j

cient of the coherent (average) field is n k 2L L5/ C 2 The cumulants a.
0 n jk

are t,. _-m plicated to write down but they are given in both [1] and [2]. The

summation over j and k cxcludes j = k = 1. It is this result that yields (i)

when ignoring all higher-order cumulants, in which case operator Q(ajk)

Furutsu and Bremmer stress that the off-diagonal contributions of ajk (for j # k)

are negligible; this simplifies operator Q(aOk) somewhat but not enough to add

anything 
new.

1.2 The Moment Equations

Furutsu therefore abandons this approach and derives the moment equations

by his cumulants + variational-derivatives method. We state his equations in

the following form: Let rm = (p m'L) = (x m,ymL) be the coordinate of a point of

observation in the plane z = L. The N-th moment<IN> is derived from a quantity

M~pý,pL) =< (r( --- E(' )E*(')---E*(-')> tbat is a function of L and of the1( N r1 rN2N transverse coordinates l-N (symbolized by -, p ) by setting

2



p% PM, and then allowing all N coordinates pm to coincide with ÷ 0, theo 0, h

coordinate of the central axis. The moment equation is

[3/3z - (i/2k)D - (k/2)W(÷P ' J ,dM( ,z) - 0, (2)
S~L

completely analogous to the parabolic wave equation in a random dielectric

where we have the Laplacian A instead of operator D, and 6e instead of iW.

The definitions of D and W are

N

D E2 (A - AQ )
m=l m m

N N F
- V(Wk-p') + V(Pk-P) -V(P V(pj-pk) (3)

j=l k=l L i ki k k

L

V(p) = k dz<6 (,z)6e(p,z)>
0

Note that W is wholly determined by the plane-wave matual-ooherence function
2

(mcf) V(p), which - for the Kolmogorov turbulence spectrum of 6e - goes as p

for p < Z. (microscale), as p5/3 for Z < p < L0 (macroscale), and saturatesO 0

as p ÷ w. No objections to (2) and (3) and no differences with other earlier

derivations are noted.

1.3 An Approximate Solution of the Moment Equations

Furutsu finds an approximate solution to (2), namely F , z) for
Ppj (all. j,k) by approxima-ing W(pjPl) by W (P,,k'), the function obtained

j1k 2 k F jk
in (3) by using the p form in the V(p) for all p. Furutsu's rationale for

so doing is based on the premise that because he wants a solution to (2) for
4. 4.

the limiting case that p'-j - 0, for all j,k, he might just as well use a

limiting form for W obtained in the limit pk- P -÷ 0. That limiting form is

the above-described WF obtaincd by utilizing Furutsu's Eq. (68a), and it results

in (ii).

3



We believe the source of possible error, or difference of opinion as to

the validity of the result, lies right here. In our view the approximation

Wýý WF yields an HF # M. To make this plausible, we recast (2) into an integral

equation subject to the boundary condition that M (jiTp'L) 1 1 as W + 0 (the

free-space moments are all unity).

L [e(i/2k) (L-z)D )

fd k' J j ~k

A formal series solution to (4) is obtained through iteration; the re-

sulting series is analogous to that of the Born terms of the integral wave

equation.

Furutsu's approximation W = WF is correct when D = 0. This can be seen
2

in general, but also specifically from a simple example: Let W = sin z. Then2
WF = z , obviously the asymptotic form of W as z 0 0. If we solve (2) for this
simple case we obtain

M = exp [-(2z - sin2z)/4], M = exp(-z 3 /3) (5)

Clearly, M -÷ MF as z + 0, as Furutsu claims it should, and he was pre-

sumably guided by such an example. However, when D # 0, as is the case in (3),

matters are entirely different. To start out with, the operator in (4) should

work first on WM; only thereafcer should one set _p = 1". The exponential

operator containing D brings into play an infinite number of higher-order deriv-

atives of V at the origin of its coordinate. This means that the shape of V

(thus also of W) well away from the coordinate origin plays a role in determin-

ing M! That suggests strongly that MF # M because WF (p) # W(p) for P > £o[3].

We have, in fact, cop- inced ourselves of this fact by choosing a few simple

examples of operators D in the first Born term of (4).

Our conclusion is that Furutsu's result (ii) presumably is not 4alid for

EM waves in turbulent air. It would hold onl, for a hypothetical random medium2
governed by a V(p) p 2 for aZZ p. However, even for such a medium it s

difficult to see how one can reconcile result (ii) with (i).

4



2. REfOLUTINO OF FEATURES OF AN• ILUJMIXATED OBJECT

The resolution of optizally visible features of an illuminated objecE

in thE turbulent atmosphere has been studied by Fried[4,5J. Fried has com-

puted the MIT (Mutual Transfer Function) of an optical system in the turbulent

atmosphere, taking into account a differ-3hce between long-term and short-tern

exposure. His fornalism describes the distortion of a point image formed by

a lens in turbulent air. We are interested in a somwvhat different concept

and will therefore adopt anzther approach.

Consider Fig. 1 where we have sketched a ground-level "eye" obeerving an

object at distance L subtending a geometrical angle 6 = arctan(p /L)' p I/L
go o

HEIGHT z I

ZfF/ / 0

02

Ole

Figure i. A ground-level observer, and two point features
separated by distance Po from each other on an
object at range L and height Z.

for small o /L. We want to know whether or not we can distinguish two point0

sources nn this object separated by angle e in turbulent air, given that weg

can distinguish between them in free space. To do so, we shall compute the

differen'e 63 in bending of tne zwo rays emanating from •:?ch point source which

would reach the eye in the absence of turbtlence. This corresponds to Fried's

short-term expcsure. Analogous to long-term exDosure would be the distortion

5



wbich includes refraction of the central ray corresponding to image blurring

by random variations of -he wavefront tilt. This latter case does not appear

very interesting ro us because it is always pcssible to track the total obje,:t

and thus remve the "'wavefront tilt" as Fried terms it. The nther case,

corresponding presumably to Fried's short-term exposure, appears more incerest-

ing because i.t z•lls us hop' features become indistinguishable even when the

total object is being tracked. Trhus, we are interested in the angle & which

is appropriately given for all conceivable distznces in the atmosphere by the

geometrical-optics ray formula,

I L - , ~
• 2 fo dSl- de•[oj(s),S 2 6• 2

0(s)= (L-s)r /21. (6)

2 = (L-s)c /2L
2ts) 0

The derivatives 71 and V2 are with respect to the transverse coordinates

P1 s) and p 2 (s) of the two rays (sketched in Fig. 1) we are comparing.

Clearly 69 -• 0 as o0 - 0, and other properties expected of this differ-en••e

czw-L 60 will become apparent later. We shall proceed to calculate t'-% sta-

tistics of 66. Analogous to so many other similar quantities in turbulent air.

this one too is clearly Gaussian with zero mean, and we need only compute its

variance. To describe all the details of this calculation would be extrenely

tedious as it differs hardly from many previous ones. The notation is given

in preceding reports[6J. The zechnique is always similar. It involves the

following steps:

(i) Replace 7T 6c(,s) by - iKMe(k,s) through a partial two-

dimensional Fourier transform in a plane s = const.

(ii) Use the customary properties of the covariance <6e(K',sl)

6'(K22,s2)> to igncre effects of order L0/L and to introduce

the dielectric turbulence spectrum 1(K).

2 3 2 2 -2211/6 2 2
E ý(K) = 32r- x 0.033 C (K + L ) exp (-K /r_- (7)

n o



IVe f ind

L
<652> (4-x)if ds 2 (S)f K K 3 4,(X) j1 f J2K,-.(S)4 (8)

0 0

where I 1 (s) is given in (6). As we shall consider fairly s•aa valiues of

Pl(s) and because there is a factor K3 fn the above integrand, it can be

argued that the factor (K2 + L-2)1.16 in (7) may be replaced by K' 1 1 3 .

serting (6) and (7) into (8), introducing the auxiliary variable x = K21i,oU

and then perforning the integration over the new variable x, we obtain:

L
1/ 3 f 2 - ' 2 2 LS 2l4 7  9

The coefficient 1.3 is an approxinatien of 4 x 0.033z2 accurate to about 0.2%,

- is a gpnma function, and M(s,b,z) is a Kwmer fun=tion defined in (13.1.2)

of[7].

2.1 Horizontal Propagation

For horizontal propagation, C 2(s) is a constant. Using the above-cited
npower-series definition of the K-umer function, we expand into a power series

and integrate tern by tern to obtain

<•2> 1.3 3L - E 4 2 ) (10)n = M=1 ( 2m,' -m (.-)

This form is useful for small values of < 0. Thus, when o0 << t, i.e. when

two distinct features are separated by =c'h less than the microscale, we find

a differential refraction with variance.

1C2I/3L T(7/6) (<mro)2n = 1 m 12 1 0 for P << E (11a)

"2 lbm 122o2

Note that the combination . 3 2K1/, L is identical to the rztio r 2B/L where
2 nm LB

-rLB is the area of the average focal spot in turbulent air minus the v;L'jun

7



diffractirc-lini.ed area as defined L- RMIX-TR-72-i!916j-- On the ozher band,

vh.n a, >> L0 the Kuier fsrnctin fn (9j- is eVeigible and we obtaia

!!' 2 ->
"6.M2> = 1.3 C 2 '3L x M/(1/6) = r(1/6)- .3/L- cr a (11b)

Equatioms (11; provide a basis for deciding whether or nor reo! tzion is7

Possfble. Sle suggest - sonewhat arbirrarilly - that <2, be camnared with
•.2 2 2g oIL .T rea2on for this criterion is that a ray coning fror feature .

would appear to be ccning fron feature 2 when these angles are equal, and hence

feature 2 would not be irlisrtinguishable from feature 1. !1owe;4er, features It

and 2 are not c'nfused with each other vhen <6v << < 2 i.e., resolution is

good. A resolution index of use would be <(d66 ) 2> g<(•/•g) Resolution is good

(bad) wnen this index is much less (more) than unity. Fron (3i) we obtain

(=, )2> 0O/, j t )2 fra<< L
g = 2 nL for "0 0

(12)

r'6) /r 0 ) 2 for P 0 >1

Consider (12) first of all for s-cti 0 (p << L ), i.e. for resolving well

within the microscale. It is noteworthy that the criterion is then inaepe_-

dent of P In fact it simply depends upon the ratio of rLB to i o i.e. upon

the strength of cum-ulative turbulence along the path, whether or not resolution

of smali features is possible. Let us reLast (12) into a more numerical form:

<(9/ )> _ UrLB /0.61 t ) 2 for c << Z
g Bo o o

(13)

S(2.4r LB/ )2 for o >> k
Loo o

We have reproluced Fig. 1 of RADC-TR-72-119 as Fig. 2 in this report, so that

the user can simply read off rLB for given L and C 2(L was chosen Lo be 6
LB n o

for this graph). Sub-microscale details appear to be unresolvable for
2 -its -2/3

C > i0 m and distances beycnd several hundred meters, a hardly surprising
n

8
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0.1 1 10
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Figure 2. A plot of rLB as a function of range
L and turbulence strength C.-

"fact aad somewhat useless since the microscale is in itself so small. Let us

rather consider the other - more practical - case that 0 >> k. in which case0 o

the second of (13) would hold. In :his case resolution is i'st for all details

that exceed the size 2.4rLB which is easily read off Fig. 2. For example, the

critical size for distinguishing details at 3-km distance, when C2 = io-14 m2/3
n

appears to be of the order of 8 cm.

A more formal version of this simple theory can be obtained by utilizing

Yura's procedure[8] for cor uting tr.e mutual-coherence function (mcf) of two

delta-function sources at locations 1 and 2 of Fig. 1. It appears sufficient

to us, however, to utilize (13 and Fig. 2 for rapid estimates of the amount

of etail that can bf resolved. In the sense that amplitude effects do not

9



zoa rwar to play an kizprztaE role in the piane-wave and s-.heriva-l-wae mkf, it

wcouid a..pear that czasiderations based on (6) suffice.

2.2 Slanr-Path Propagation

If the viewed object is az altitude Z, then the develoere n from (8) an

is different because z 2(s), ee C.2 (s), is a fution of vath V.sition. The
2 MI

alticade Madel of C (s) is dis:ussed in TR-t•,UC-72--1l9j6J in ea-ugh derail.

We shall adan.t the a >> I -o-dition so that the Besse! frustion in (8) c-an0 0
be ignaored. In that c&,se we find

<ia (Z)-- = (Z) <66 (0)>

i (14)

"F tL' E ds f(1 + sZRz )-213 (1 + SZ/1) -2/3 ez(-2sZ/h),

0

w-here , 2(f,)> is the horizontai-proi agation result given n. (ib). The y-onzin-

Cirkhev -"ee th has been di ided by 7to yield- I s; at dz---awnd dusk I s an5 5

at midday (sun-y weather) I -1.5 n. The observation aa ritude is chcsen
S

arbitrarily as z 1 - n, but there is some ,•ncerrtainty in Ehis choice. There
0

is also considerable arbitrariness in the use of this nod-el for altitudes

above several hundred -eters. As a result, we shall also reitrict ourselves

to Z << h.

(A) Dawn, dusk approxination, L -s

s

Yr this case, only the first integrand factor of F(Z) deviates fro= urity,

_nd we obtain

-2/3",Z % - (Zzo % 0 )-- Z << h (15a)

(B) Midday, suzashine, 1- 1.5 z&

This is a slightly more cc.plicated case, even for z °' << h. ThroughC

coordirnate tiensfor..-ations, (14) can be recast into

Z/(L-S z o );22/2 3 - ]1/3 -203 -213
FMZ z 2Z:- dvy y !5' (i6)

L s C 0I f
0

10



I,
w•hich expression contaln. z- integ r apresentation of .o.pilete beta function.

Swever, the upper bowxi of the imtegral is extremly large; bere, we my set

it to =. We the have zhe representtion t f tb• ,rtmer function U(1/3, 213, 0)

(sec formula 913.2.5) Im ref. !7J), iiihc redces to a qwtient of pcdcts of

g8 f ntions. We fi.d

C2I3
F(Z) '113 113 x (Z/z)-0 z << z << h?1516) 113t_=)l3 o ,o

S0 t/0
(15b)

S5(Z/z 0)'J

The nmerica1 estifate in (15b is ba-,i on I s 1.5 a, z 1 a. These for=-ias

(15) are intended to be guidelizes rather than a rigorous basis. Toe uncertain-

ties in the C 2(s) nodel are rxo large -or m:e accurate results. We note a

srrcuger red.uction with altirmde increase of <3/(Z)> cx-.,•,p'ea jiah an equiva-

lenr horizontal -path propaEzmcn sit-tarion at mi-AtT týan at da-n or dusk; on

the other hani, C 2(0) is usa aiy aud higher !-t midday so that conditions for

featmre resolution ave usually berter at dawn and dusk, even for objects fairly

high in elevation angle.

I
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-3- - __-- IN F r= LGJCF.ý- -&V

Me t3e-or- of irra-aize fl~twacioas of a 0ý Uave in sariaent &Lr

was prese~ted in a pore'~icas quaate~ly' repart, SOC-72-72-27M-16] its 10or Mee-

result was wo Predi~r a :--n-ma1 dfistribultcia of irradiante I in tre s:artta-

riomn regine, i.e. vý:ere k ?_ C6~ is WE sarall. N.r- s-ce-ific~ally, it de-

f ines the szaruation, reginLe by tke size oi the par ~ter S U C 2C, z.I~

does not difHfer a great deal' fr=. ~L ICZ -z: corica! freq-e=:gs, and it

predices for r!he Ilog .-t*itude variance

.2 713, 3 _V'6 (7<,ý > ( L C) (7

- 2
U-en >> I. The right-ir- nd side of (1) x*T 1cok faiiý - t oo ;_s

1,76-11/6 2 ,it'
-not very different fron (k .- C5 at oorical frequenaies- One sol

rot, boeveer, P'rha the predictedi coinarians of warialsi .-

are -not restricted to Koliwgorov riumrBlence statistics.. Themy are nare general,

and w+- orefer to use th=- a-so because the distinction bet-ween th~en and
716 11/ý6 2
k C cannot be na-ee ezver-ineaita~ll to date.

A coef'icicent of proportionality is maissing inn (17). Mae ?.irpos! of th-s

section is to estinat-e it. The starting point is Ea. (A)in ~'CT-22
This equation yields a real part X. zie~b

0

and we use the co-iservation-of-energ'; relationship for the varia;;,:e of X

nzrely < t2) > > <), Lo compute the variance <,r-,> fo ('8a). The

correlation <d9(i(,z)e7.p[-iiK*3(z)] >can be computed to oe
2 2, 2 2 2

(CE/4)K v(K)(L-z)ef,p-K <,C (z)> /4]d K. Substituting this into (18a),

utilizing the speccrum, I(K) = 32-(CK 2111 3 exp(-K 21/2 ), and making the var..able
2nchanges of K to x K (L-z)/k and z to y = (L-z)/L we cbtain

12



<j2> 7/111/62 516 /6 .2
S-p 

L f Cx x expf--= If y W (1 8b, )

0 0

wr-,ere y 0.03372 , 0.32-5 ami f(y) - yr(716)y(3-2y). rhe lzst integral in

(o yields a ganz ffucticn F(716), and uon sta- e.,-ent re of the

factors we obtrain

< > = a(K=7/3L C 2V

-= [y(7/6) ]-/6 1 dy 7-13(3_2y)-7/6 (9)
f
0

The coefficient 5 is easily ccamnried 2 ericalb, and ve finally obtain

<Ix2>= 0.41(?AC 3 L3 cnL 1 6 - (20)

This is the fina•l result. In order to f--ci1itate coiarison with existing

data plotted as measured <6)2> vs. observed values of v 2 = 0.307kTI 6Lu1I6C2

"• ~n
we re--rite (20) as

S234 7/36 ) 2/ (21)

This formula indicates a Liak. dependence i frequency and pathlength of the

coefficient of (a)- . If we set L - 6 = (i.e. - 10 ), X - 0.6 um
1 0 2,-1/6(i.e. k z10 ), and choose T = I k1m, we find the coefficient of (a.)

to be 0.14. If we take L = 500 m or set X 0.3 um, we obtain 0.16.

MeverL, et al.[9] present two curves in the saturatien regime Gf <6X2> vs.

In our notation they find

S-0.17

,<•X-> = 0.55 (3) at X = 0.5!4 ii

(22)

= (O. 2 ) -0.17 at ), = 1.15 t•m

13



1"he agreement of the theory with these darL is not unreasonable, but the

predicted wavelength dependence of the coeff :ient is strongly contradicted.

Sowever, the l.15-i curve is based on only one point in the saturation regime

so that perhaps one cannot use these data to predict the wavelength dependence

of the coefficient. More recent data taken by Kerr[lO] -- see his Fig. 7 - in-

dicarte a weak wavelength dependence hidr-er by data spread, and a relationship

<X 7- 0.3 (-116 (error perhaps 302), (23)

-2 7/6 11/6 2 clwvs Wehe
where f= 0.124 k L C n is the paraneter for spherical waves. We have
not yet computed our coefficient for spherical waves so that we have net

checked out this coefficient which contains an appreciable e-ror due to data

spread. However, it appears to be the same order of magnitude as for plane-

wave data - see Fig. 3 of Gracheva, et al.[11]. For these latter data we infer

from the plane-wdave plot,

< 6x 2> -0.25 (0 )-1/6 (error p:!rhaps 20%) (24)

so that, again, there appears to be reasonable agreement with our results (20)

or (21).

14



4. ANGLE-OF-ARRIVAL POWER SPECTRUM FOR AN INTERFEROMETER

I " -

In a previous report (RADC-TR-72-119)[61, the power spectrum of the focal-

spot scintillation was shown to be that of the angle of arrival of a ray, and

it was computed. In the present report we shall do the same for an interfero-

meter simplified to its essentials. Basically, our interferometer consists

of two parallel rays separated by a distance p. They are collected by a lens

at distance L and focused into a fringe pattern. The "center" of this fringe

pattern deviates from the central axis only through mutual ray bending caused

by atmospheric irregularities much larger than p that are intersected by both

rays. All other irregularities give rise to relative bending, i.e., to dis-

tortion of the fringe pattern. A measure of the d.ztortion is given by the

difference 60 of the two anglos at which both rays arrive at the lens. This

difference is described by the vector.

L

(1/2) J dz[T 6cP/2,z) - T6e(-P/2,z)]

0 L (25)

L

0

Each T refers to the gradient operator working only on the first two

transverse coordinares in 6c, denoted by +t/2. A partial Fourier representa-

tion has been introduced in the second line of (25). The vector p describes

magnitude and direction of the separation in the plane of the two rays. Time

t is not indicated explicitly in 6ý or in H(K,z).

Let us define 04(K;T) as Lhe three-dimensional Fourier transform with
4 4

respect to r 1 -r 2 of <6(rl1t)6e*(r2,t+T)> . Let us also define the auto-

covariance R (T) = <6b(t). 4 *(t+T)>. Upon forming this from (25), making

the customary approximations for L << L, and performing the usual other0

manipulations, we find

R0 (T) (e 2 L/8T 2) fd2KK2•4 (i;r)[l-cos(i.j)] (26)

15



Note that this exprepsion differs from Eq. (28) of RADC-TR-72-11916] only

by an extra factor which describes the interferometer situation. We now apply

Favre's hypothesis for 4 (K;T),

(P4(K;T) = -P(K) exp[iiK*-65 T- - 4(KAUT)2/3], (27)

as set forth in RADC-TR-72-119[6], noting that

2 D(K)= 32wyC 2n(K 2 + L-2)-11/6exp(-K 2 /K 2  (28)
/n 0 in

y =0.0331r2 - 0.325

We insert (28) and (27) into (26) and take due note of the fact that

there are two fundamental vectors in the problem: (i) the transverse velocity

vector UT, (ii) the transverse separation vector p. Before writing down the

result, we develop notation some more. Let • = p/L be a normalized separa-
tion vector (i.e. in terms of the number of macroscales). Let ý/ be its

component in the direction of k, and ýj be the component perpendicular to

UT. Let us also introduce the two angular frequencies wT = U T/L and

A = 4AU/L /3. The result is then
0

00

Re(T) =4yC;LLl-/3f dx x(l + x) -11/6 exp XAW/)(KML)2
n of

0
(29)

x Fjo(WTTxl2) - j(p xl12) - (P xl1/]

P+ mT - + & I )2

We now define the power spcctrum W0e() as the integral from T = 0 to i =

of 2R0 (T)coswv as in Eq. (32) of RAEC-TR-72-119[6]. This yields

1

16



-11

W,()= 8yCLLL 13lw (.OJ,)I) -W(w1/)

[n o
W9(w,q) = w- dy o dx( 1 + x)-qcp -x Y_2+(

0 n

J Y+ ~~= [ (y+ /Wo/T) 2  + (•j.•/WoT) 2 ] 1/2

S~This form for W0 (W,q) can be simplified somewhat by a coordinate trans-

:-" formation y -+ -y for the third term. After some algebraic work, we obtain

(31)

Note that the parameters •1W/wT = P1W/UT, and cU W/WT = OU W/UT are the

* ~ products of w with a fundamental time T1  = P1/UT (and TU = P/I/UT) that

describes the time required for air to flow across the interferometer beams.

A third result ensues for the case that •1 = 0, i.e. for the case that
• + L+

UT//O. The obtained spectrum is identical to that for a ray multiplied by

tne factor [1 - cos(wTu)] where TU ; P#/UT. It filters out all harmonics of
the fundamental beat frequency 1• U/U

From here on, we will set cn/ = 0 to obtain less trivial solutions for

air mlow in chat plane through the central axis that is also perpendicular to

the plane of both ..nterferometer rays. It is quite easy to amend the solutions

thus obtained to the general case, simply by prefixing the factor cos(wT#/) in
front of the result for the second term of (31).

17



4.1 Frozen Flow (Taylor's Hypothesis)

Let us first solve (31) for the vase that AU = 0, i.e. no random compcnent

of velocity. We obtain,
SOCD

Wo( ,q) = f dy cos yf dx(l + x)-q exp[-x(KML 0

0 0 (32)

1 jo \2--±") - Jo [y2 + (t/$w V T) 1/2

Following Appendix B of Clifford's work for the y integration[12], we

reduce (32) to

CO
WO(w,q) = ' dx(l + x)-q 2 2 2)1/2 exp(-x/K L 2

f 2

T) (33)

x 1 - cos(EI [x- (W/WT)2i2)1 (33)

The following steps are carried out on (33): First substitute
2 2 1/2x = z + W /WT. Then expand cos( Tlz ) into its power series, substitute

z = t(l+2/T),W 2 and apply formula (13.2.5) of ref.[7] to the integrals in t.

The ultimate result is

W 2 / S 2/- - 2/+T

W (w(q) 1 + W2 /WT1)2-q e T U (1/2,3/2-q,

TT (3T)

L -,2 2 m  U[1/2 + m,3/2 - q + m,(,, + 2 2

m=0 WT U[1/2,3/2',(w + WrT)/2]TI

quite clearly an extension of our previous result, Eq. t36a) in RADC-TR-72-119[6].

In the general case that E,# 0, the summation sign in (34) will be preceded by

the factor cos(E// w/w T). The Kummer function U(a,b,z) is given in formu3a

(13.1.33) of ref.[7]. The power spectrum has three distinct regimes. For

18



t it is flat. For c << u << T there is a decrease in 9(u,o) with
(u1,)1-2q (note that gy = %Loy). From the first of Fqs. %30) we more that

soon after u increases above ', the q = 5/6 term is dominant because it y.•!•s

Spower-spectral d.,crease as (u/ y)-2/3 which certainly masks the small correc-
tion fron the q = 11/6 term yielding a (u1u -81 d crease. Thus, the ;xwer
spectrum decreases as U in the regime of greatest interest;
U/L << w < U /Z . When w exceeds , i.e., when we look for spectralT o T o
components determined by eddies of smaller size than the microscale, we ob-

serve a rapid cutoff.

With regard to the interferoneter "correction factor" f-----1 i} (34),
it is obvious that W0 (,() -j 0 aA E 0 o. It is less clear what happens when

I ÷. ="We know that the interferometer separation becomes infinite, and
because eddies are blown across the interferometer in planes perpendicular to
that A.f the interferometer (which are parallel to the ce-_'ral axis) we know
that independent realizations intersect each axis. Consequently, the factor
{----1÷l, and we obtain -wice the single-ray power spectrum. This can be
shown more ea3ily by firsZ letting fT + - in (34), i.e. by considering the
asymptote of w << 9T. In that case (34) reduces to

W (w, q) - r(q - 1 /2) +F w 2+ 2)2¶ 1/2-q
T(q) - 1

2 2 3/?-q q1/2 / + 12\ q-1/4 w2/X 1 - r(q - 1/2) c1s(tlw/°'T) -i 2 + q!2 K1 /2-q [i + 2•T wTI

It is quite clear from the asymptotic form of K as , ÷ that {.....-} ÷ 1.
Furthermore, (35) is clearly much handier for numerical purposes than (34),
which nas more detail in it than we really require in the interesting portion

of the power spectrum (w < QT

4.2 Random Flow (Favre's Hypothesis)

Consider the general case, AU # 0 and UT # 0: the case of random Gaussian

velocities with a mean UT normal to the propagation direction. We have notbeen able to perform both integrations in (31). Possibly one of the integrations

19



h= B*Caried (r. With= W.LIP1f 3 1in kth ex;:eSSj=- saw'r ir is 7assib1t
toO btaf scu cas~e6-form rehsm ' abz2' :1Orf'~rzls.~e~i

disruss a few of zbse.

4.2.;. It•e j213 ?ortic or e Spe-

In bl s~seti we restrict c~rseites to or ora~~ <uCC~C

(MI2 is deffimed similarly as Im wiith 5X repiacirna Ti tha t w~ e seE
(14+-) • , x set q = 5/6 ani re rthea 11/6 c=nribtion, d let:
"-c= -o in (31). We change variable z to z = a2, obrai2n

I ) 2Jlf -213 2o uIh 2 J 2,zI

ft 3J Jol~y +( -T

0 0

2 2x ex•[-t (y&./2u) 2

The following algebraic steps are perfor-sed upon (36): (i) mutiply the2• 2] e.- /, 2 t2  and abscrb the lastlntegrana by L e x 1p[ =. ~ ~ 'T2

exponential into the last factor of (36); (ii) expand exp.[• T/u)2 t2]) into
its power series; (iii) perform the dt integration, using formula (11.4. ?) of
ref.[7]; and (iv) perform the tera-for-term dy integration using formula f9.6.25)
of ref.[7]. The result is

CO7
.2 1/

where the Kummer function M(a,b,z). rlso knowr as 1F1 (a,b,z), is defined in

(13.1.2) of ref.[7], and K (z) is a modified Bessel function of fractional
order v. The power spectrum in the -2/3 region is thus in general,
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r- ,,:.=• 2 ,-•'"1 •

&1,

Note that ti.. the first fa-c of W'(,,.6) is ii a=srt raEdtm -,

of RA C-IR-42-204-161; there is only a dif ference in normaiizuati'na by a cvStantr

ftcwr 82-r -1 (t.e factor c 2 - -1 / 3 -was n-4-eer.en•rlyCa rted in r.

ray foray ~ 14

h-yr thesis is oba.e frcm (38) in- the Id-.t ! -* G. it can

be seen tiat (35) results -- ith cly one • •iference: t fctor 22 /

(35) is rep 2ced 2/UT-

The ot•er linit is 0 - O. EHzrerer, c;r fornulation leading to (38) is

really not suitable fordeali-ng -it•" this linit. -As i- 0, there is no longer

a preferred direction alcon which a •/ awd - can be defined. The factor

c..os(-j •T) in (38) appears moreover to become infinitely oscillatory and

hence acts effect•veiy as a zero factor - unless rjr -÷ 0 more rapidly than

0- 0. Clearly, the fornulation in this fashion is not suit;ble for small

ratios of ./& or of ILT/:. The difficulty lies in the transition fion (30)

to (31): the fornula where the cos(ý I factor first appears.

Reconsider (30) and rewrite the argumnent of the second and third Besse.

function terms of the integrand as

1/2 = +z-y) 2 2] 1/21/2
=T --(39)

T +2. \, 2 1/2 112
= +2-, 7+7



(30 rei t • •e rts ..1- .3 = ff ze 2

r" M0 efI z Y-

. (Iz. s/6) = rVI13) (1rIP,") 1r,)-2•3

P - r13.f ~-2/3 -t~ 1 .,t~

0

as the lea-din tern~ in' te smral- uIfr/ limit wbe- ic >> Liu.

4.2.2 The Flat Portion of the S::ectrum

Here, we restrict ourselves to u << bu, = <- iT. We set < -n , replace

y by variable y' via v = y' L/; (then we drop the prize for conwe:-nienie) a=--

tLen let = -• 0. We obtain

W• (O,q) = 1(0) - cos (4)

2 2 .
-(:!) = eT ] dyf dz(I + x)-q e-xy (Ai/2t) - ,2 1/2r

0 0

Unfortunately, we are not able to reduce this expression greatly. By using

the addition theorem
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IU

we cam recst (4) f~ C&Cf

2 2

ii

-1~ ~), (Yza.qZ)IF( c,Ct;i (.

0

The f~~rc~~o~ I im (&.3) are n1~zizSsslfrr ~ h f~tlas F(,)
La

bav to ibe compmedf mmric~a1d'., HOWe-r, 1(0) is e251lY e~maited b0t;s

FS(0,G) = 0foru.#a f ad F 0(0,G~) = -7(qI~) d= fimd for the

flat part of the sectra - e-- - = 0

W O_ (0) c3 L -113 [7(i/3)/1(516) - -(s/3)lr(i116)!

2 oT )exp(- 42. 2 ) 2p CO1.ZhL

WIe note that one half .f -he above fornula, after also replacing

by unity, is the generalizaticn of the ray angle-of-arrival power spectrum

for - << "T7 " << L.. It yields the same linits as (36b) and (38b) with - 0.

4.2.3 Concluding Remarks

The differences between ray and interferoxieter formulas, the latter given

by (38) and (40) and the former by one hailf of the leading first terms of each,

appear at first sight to be unimportant. The curly-bracketed factors reduce

to unity when I (or - in the other case) exceeds unity. Considering
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(~ ~i~~~(20 L, OCO~. az - -1): Th* armv
=*rS per-tai VS s) ZIS ede C&C ray v (") Far all practical pwr-

SeC L 0 for all Practical parpwses to cObtaft nte, Cke ray fome for
'Wta ~a by a fliter factor l - it the ~e tha

!S Mot smal, a~a time factor Of 00b) for the other, smal eas,..

It is 6cublas that an&4re c~rajt formulas are required I=ta -213 regiwe,,
hcoc they can be wvrked out MunricalY from t&e form gi'en m Lathis sectim"
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